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pair moved as a unit. The loading blocks
were mounted in the center space by a O.OSO-
inch brass supporting tube clamped in the

top of the cavity. Four blocks were tested
(Fig. 2): one with a square cross section to
give nearly equal frequencies, one with rec-
tangular cross section to give moderate

separation of frequencies, one 1 shaped block
to give extreme separations, and the block

shown in Fig. 2(d). The large horizontal di-
mensions of this last block make the space

between block and cavity walls small, there-
by providing high capacitative loading. The
holes in the corners help conserve the effec-
tive inductance by allowing the magnetic
field a near normal path. Each block had a
vertical dimension of 0.280 inch (i.e., about

one third of the depth of the cavity). The
other dimensions are shown in Fig. 2.

Power was introduced by two magnetic
coupling loops which could be rotated or re-

tracted. The two loops could be used to feed

each mode independently, or one loop could
be oriented to feed both and the other loop
left as a tuning monitor.

Measured Q values corrected for coupling

losses were 2000 to 3000. Tuning curves for
the cavity when loaded with the rectangular
block are shown in Fig. 3. Results for this
and other blocks are summarized in Table 1.

Ceramic plungers with a thickness of
0.120 inch (i.e., two times the original

thickness) were fitted and tested with the

square cross section block [Fig. 2(a)]. This
resulted in a tuning range from S65S Mc to
7450 Mc for each mode. A block of quartz
(relative dielectric constant 4) with a vol-

ume of 0.034 cubic inch was placed in the

bottom of the cavity to estimate the amount
of detuning likely to be caused by the pres-

ence of a paramagnetic or other sample in
the cavity. The quartz occupied about one
fourth of the total volume available for the
sample and lowered the cavity frequency by
less than one per cent.

Capacitative loading by centrally
mounted copper blocks is free from lossy

joints between conducting elements and does
not lead to an excessive deterioration in Q.

In magnetic resonance experiments, there
may be an over-all gain in sensitivity due to
the reduction in cavity volume and the in-
crease in sample filling factor. For a given
size cavity the operating frequencies may be
chosen anywhere in a wide range and may be
altered merely by substituting new loading
blocks. Because of the effect of the block in
concentrating the electric field between it-
self and the cavity wall, it is possible to ob-

tain a fair degree of independence in the
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tuning of the two modes and to cover a range
up to twenty per cent without using large
amounts of dielectric. The lower third of the

cavity volume is left free for the mounting of
samples and contains the region of strong
mag-netic field common to both modes.
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Unloaded Q of Single Crystal

Yttrium-Iron-Garnet Resonator
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Fig. Z—Plan views of cavity with each loading block
in place. EA and EB indicate the direction of elec-
tric field for modes A and B. Third dimension of
all blocks in 0.280 inch.
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Fig. 3—Tuning curves for each cavity mode when
loaded with rectangular block [Fig. 2 (b)]. Tuning
plunger displacements are measured from the
central position (i.e., the position in which the
plunger occupies the space between the loading
block and the side wall). The two curves shown
in each case correspond to the two extreme tuning
settings in the remaining mode. AU is a measure of
the independence of tuning.

TABLE I*

Type High End An Low End Av Tuning Range

Square Block
Modes A and B 77OO Mc 50 Mc 7075 Mc 40 Mc 625 Mc

Rec~:m#~ Block I 6220 Mc I 25 Mc I 515o Mc I 20 Mc
Mode B 7940 Mc I 1070 Mc

190 Mc 7265 MC 135 Mc 675 Mc

I Block
Mode A
Mode B I 5280 MC I 25 Mc I 44OO Mc

1
2 Mc I 88o Mc

915o Mc 305 Mc 8500 Mc 255 Mc 650 Mc

Block of Fig. 2(d)
Modes A and B I 495o Mc I 30 Mc I 385o Mc I 50 Mc I 1100 Mc

* An is a measure of independence of tuning. It is the change in frequency of one mode when the tuning con-
trol for the other mode is taken from one extreme end to the other. See Fig. 3.

The practical feasibility of constructing
magnetically tunable broad-tuning range

microwave filters using single crystal yt-

trium-iron-garnet resonators was demon-
strated in a recent paper.1 Experimental

results were presented on one- and two-
resonator filters which can be tuned by

varying a dc magnetic field bias over a full
waveguide bandwidth and greater, at the
same time maintaining an insertion loss per-
formance which is comparable to mechani-

cally-tuned cavity filters. The crucial pa-
rameter of the resonant elements in a band-

pass filter is the unloaded Q, Q.. With a
spherical single crystal of yttrium-iron-gar-

net the Qti decreases with frequency below
X-band frequencies reaching very low val-

ues at frequencies around 2000 M c.
Analytical formulas for Qti ( = 2ir X fre-

quency X total energy stored/power ab-
sorbed at resonance) have been developed.z
First, formulas given by Lax3 were used for
the effective susceptibility, which relates the
RF components of magnetization inside a
ferrite to the external RF fields. Lax uses the

original Landau-Lifshitz formulation of the

equations of motion and makes the substi-

tution a = l/wr for the original damping pa-
rameter a, where ~ = a relaxation time, and
~ = 2~ x frequency. By using his suscepti-

bility formula the following expression for
Qu of a sphere was obtained:

Qu = CWr/2 (Lax). (1)

Recently an analytical formula for the
effective susceptibility was developed4 using
the modified form of the Bloch equations of
motion of magnetization which were given

by Bloembergen.6 Using this result a new re-
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and by the U. S. Army Signal Res. and Dev. Lab.,
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Microwave Filters and Coupling Structures, ” Stan-
ford Res. Inst., Menlo Park, Calif,, Tech., Rept. No.
8, SRI Project 2326, Contract DA 36-039 SC-74862;
October, 1959.

8 B. Lax, “Frequency and loss characteristics of
mkrowave ferrite devices,” PROC. IRE, vol. 44, pp.
1368–1386; October, 1956.

~ C. Flammer, ‘<Resonance Phenomena in Fer-

rites, ” unpublished memorandum.
E N. Bloenbergen, “Magnetic rc50nance in ‘er-

rites, ” PROC. IRE, vol. 44, pp. 1259–1269; October,
1956. Eq. (5) (Bloch.Bloenbergen equations of mo-
tion) contains an error. The term –Mo/T should be
deleted.
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lation wsmthenobtainedfor Qu:

where

coo= resonant angular frequcncy=2~
Xresonaut frequency in cycles per

second

OJm= -iOMO = pOg(e/2wz)Mo = 2rrfrn = angu-

lar frequency corresponding to the
rnagnetizatiou, in which

PO= intrinsic permeability of free space
,= 1.256X 10–8 henries per meter

g = 1.and6 g factorS%2 .00 for electrons
in most ferrites

e/wr = ratio of charge, e, to mass, m, of

electron = 1.759X 1011 coulombs/kg

MO= saturation magnetization of ferrite,
amperes per meter.

This new formula for Qu given above pre-

dicts that a value of Q.= O should occur at

WI= COJ3, thereafter increasing linearly with
increasing frequency, provided that ~ is inde-

pendent of frequency. According to the

equation for Qti derived using the Lax
formula, the variation of Qu is described by

a straight line which intersects the origin,

Q. =0 at .fO= O. These two relations given by
(1) and (2) are shown in Fig. 1 for the case
T=2x10--7. The only qualification that
must be applied to these formulas is that
the material must be fully magnetized. For
a spherical shape this requires that the oper-
ating frequency should be somewhat greater

than ao =c.AJ3 = YoHO, since a sphere be-

comes unsaturated at biasing fields of this
magnitude For single crystal yttrium-iron-

garnet this “saturation frequency” occurs at

‘o =.fm/3 = 1670 kp C.

Fig. 1

It is possible to reinterpret Lax’s sus-
ceptibility formula so that it now becomes
the same as the new formula. This is done

by substituting for 7 in Lax’s equation a new
relaxation time (CJO— N,ti~ )r/rJO, where N. is

the z-demagnetizing factor. In the case of
the sphere, N,= +. However, the new for-
mula is obtained straightforwardly from the
Bloch-Bloembergen equation of motion, and

the equivalent circuit interpretation, with-

out the artificial introduction of a relaxation
time which in turn depends on a demagnetiz-
ing factor.

Measurements were made of the Qti of a
highly polished spherical single crystal of
yttrium-iron-garnet, using the method de-

scribed by Ginzton.t The yttrium-iron-

garnet sphere was mounted in a short-

circuited waveguide or transmission line

near the short circuited end. A 0.064-inch

diameter single crystal yttrium-iron-garnet
sphere was used in these measurements.

The experimental values of Qu are shown
as points in Fig. 1. An approximate fit to
these data is given by the “dash-dot” curve.
The lower frequency portion of this experi-
mental curve between 1.67 kMc and about

5 kMc is a straight line which can be repre-

sented by the new formula, assuming
~ =2.5x 1o–7. In this low frequency region

at least, the data appear to support the new

formula for Qu. At higher frequencies the ex-

perimental curve for Q. flattens off and,
above about 8 kMc, Qti decreases with in-
creasing frequency.

It is planned to publish a complete anal-
ysis and discussion of these and other re-
lated data in the near future.
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E Edward L. Ginzton, ‘<Microwave Measure-
merits, ” in <<Microwave Measurements, ” McGraw-

Hill Book Co,, Inc., New Yolk, N. Y,, ch. 9, PP.
391-434:1957.

A Note on the Derivation of the

Fields in a Radial Line*

The concept of a radial transmission line
is frequently used in the description of such

devices as cylindrical cavity resonators and
horn radiators. An approach’–’ to the prob-
lem of determining the electric and mag-

netic fields in the radial line has been to
solve Maxwell’s equations in component
form with appropriate boundary conditions.

While the following derivation yields noth-
ing new, it does, however, have the advan-
tages of being simple and of requiring a mini-

mum of guess work as compared to other
methods of solving this problem.

The technique employed here is based

on the fact4 that the general solution of the
vector Helmholtz equation

V,j (7) + /#’/~@) = () (1)

consists of a linear combination of three
vector functions generated in turn from

* Received by the PGMTT, June 10, 1960. This
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Labs.. Fort Monmouth. N. T.. under ContractEngrg.
DA 36-039 SC 78254.

1 S. A. Schelkunoff, ‘tElectromagnetic Waves,’$
D. Van Nostrand Co., Inc., New York, N. Y., PP.
260-275; 1943.

z H. R. L. Lam~nt, “Wave Guides, ” Methuen and
Co. Ltd., London, 13ng., pp. 19–23; 1942.

8 C. G, Montgomery, R. H. Dicke, and E M.
Purcell, “Principles of Microwave Circuits, ” McGraw-
HiU Book Co., Inc., iVew York, N. Y., PP. 252–254;
1948.

4 P. M. Morse and H. Feshbacb, “Methods of
Theoretical Physics, ” McGraw-Hill Book Co., Inc.,
New York, N. Y. PP. 1764-1767; 1953.

three scalar functions:

Z(7) = V@(?)
m(?)= v x [all(?)]

m(?)= ;V x v x [ZZX(7)].

The vector ti is a constant vector and O,
$ and x are each soluticms of the scalar
Helmholtz equation; e.g., v’~(~) +k’@(r) = O.

Consider the geometry shown in Fig. 1.
The region of interest is the semi-infinite

space between the perfectly conducting,
parallel bounding surfaces at z = O and z = b.
Assume that the fields have a time de-

pendence of the form s+t and that no free

charge exists in the region between the

bounding surfaces. Subject to these condi-
tions, the electric and magnetic fields in the
region O<z <b must satisfy an equation of

the same form as (1) with k’= –Y02
= 0J2.Udl —j”(u/oJe)] where u, e and p are re-
spectively the conductivity, permittivity
and permeability of the medium between

the surfaces and co is the radian frequency.

Fig. 1—A radial transmission line consisting;
of two parallel conducting planes.

Because~f the_manner in which the> are

~efined, M and N are soleno,idal as are~ and

~ in this case, and it follows that the ~ and

N solutions for (1) could correspond to
either the electric or the magnetic field de-
pending upon the choice of boundary con-

ditions at z =0 and z = b.
A~an illustration let us, require that ~

and N satisfy the boundary ~onditio~s for

the electric tiid, namely, ‘hX~ =flxN = O.

Writing the ~ solution ~terrns of the unit
vector in the z-direction, ~ ==VX [z2r$(y, 0, z)],
and applying the boundary conditions after

solving the scalar Helmholtz equation by
the standard approach of separating vari-

ables leads to

vz, ?z=lo, l,’.... (2)

Ki and Kg are arbitrary constants which

specify the amplitude of the field. 1~ and 11~
m-e the Bessel functions of the first and
second kind respectively and @z= -- T02

–(mr/b)’. In this case, K.z must be equal to

zero because of the singularity of YJ&) at
? = O, but if the region of interest is that for
which ?~ TO# O, then KZ need not be zero.
The corresponding magnetic field can be
found from

v x Em,.= – j+ld%,m. (3)


